Targeting customers via discovery knowledge for the insurance industry

نویسندگان

  • Chien-Hsing Wu
  • Shu-Chen Kao
  • Yann-Yean Su
  • Chuan-Chun Wu
چکیده

In this paper, the knowledge discovery in databases and data mining (KDD/DM), one of the data-based decision support technologies, is applied to help in targeting customers for the insurance industry. In most KDD/DM application cases, major tasks are required, including data preparation, data preprocessing, data mining, interpretation, application and evaluation. A case study is presented that KDD/DM is utilized to explore decision rules for a leading insurance company. The decision rules can be used to investigate the potential customers for an existing or new insurance product. The research firstly constructed the application framework, then defined and conducted each task required, and finally obtained feedback from the case company. Discussions and implications with respect to this research are presented also. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Retaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study

This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...

متن کامل

Designing an Ontology for Knowledge Discovery in Iran’s Vaccine

Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...

متن کامل

Predicting Customer Churn Using CLV in Insurance Industry

Today, increased level of customer awareness caused themto access to the other suppliers easily and they can get their servicesfrom the competitors with similar or even better quality and same price.Therefore, focusing on customers and preventing them to leave, has beenthe most important strategy for any company. Researches have shownthat retaining former customers is cheaper than attracting ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2005